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The unsteady numerical method of Godunov has been applied to compute high 
Mach number axisymmetric flow past bell-shaped bodies of varying bluntness. For this 
con&ration the shock layer is governed by the inviscid flow of gas with an embedded 
contact surface and shock wave. These discontinuities arise from the triple point inter- 
action between the oblique bow shock from the forebody with the near normal skirt 
shock generated by the flare at the rear of the protile. In the numerical computation, both 
of these shocks are maintained as discrete discontinuities. The internal flow discontinuities 
are treated implicitly, however. The results obtained for an ideal gas flow with a free 
stream Mach number of 8.0 are shown. Included are the positions of the bow shock, 
secondary shocks, and sonic line, as well as pressure distributions. The shock positions 
and pressure distributions are compared with experiments. The comparisons are used to 
assess the limitations of the method. 

Presently, the trend of technology is toward development of bodies for reliable 
flight at supersonic and hypersonic speeds. As a result, there is an increasing need 
for methods to accurately calculate aerodynamic flow past complex body shapes 
in these velocity regimes. Current methods are known which give reasonable 
results for inviscid flow provided the body of interest produces small gradients in 
the shock layer. These include unsteady calculations by the method of Lax- 
Wendroff [l] as employed by Burstein [2], the method of Rusanov [3], the method 
of Godunov [4] as employed by Masson, Taylor, and Foster [5] and the method 
of Moretti and Abbott [6]. The steady calculation methods include the integral 
technique of Dorodnitsyn [7] as applied by Belotserkovskii [8] and the finite 
difference method of Gilinskiy, Telenin, and Tinyakov [9]. If a body has large 
changes in curvature, which is typical of many practical cases, the dependability 
of existing methods becomes an open question. In order to establish a reliable 
approach to computing flows with large gradients the authors undertook the study 
reported in this paper. 
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In selecting the computing method the authors relied on studies 14, 5, IO] which 
indicated that the Godunov finite difference method produced accurate results for 
smooth flows and, in addition, was optimal for computing smoothly through 
shock waves. Since the gradient in a flow will be a maximum at a shock wave it 
was concluded that the Godunov method should be dependable for computing 
flows past bodies with large curvatures. 

After selecting the method the authors attemped to optimize the flow calculation 
procedure. In order to reduce shock smearing as well as calculation points the 
authors followed Godunov’s original approach and employed the bow shock as 
the outer grid boundary and explicitly computed its position. Shock waves internal 
to the grid were smeared, however. The remaining boundaries of the grid were 
chosen as the body, the axis of symmetry and a plane connecting the bow shock 
and body in the downstream supersonic flow. The location of the downstream 
boundary does not affect the flow upstream provided it is in the supersonic 
region. 

Within the prescribed boundaries the inviscid flow equations were di@erenced by 
Godunov’s method, which is described briefly in technical discussion. The resulting 
unsteady difference equations were then integrated forward in time from a pres- 
cribed initial flow to a steady condition. The initial flow was chosen to be a linear 
distribution of variables along rays between the bow shock and the body. On the 
body Newtonian flow was assumed while at the bow shock the flow was calculated 
from the free stream conditions and the shock wave relations. 

The selection of the geometry for testing the method was made with the require- 
ment that both strong expansions and compressions be present. In this connection 
the authors chose to study flows past bell-shaped bodies. This shape provides an 
optimum test of the method since it has both convex and concave curvatures. The 
one difficulty with such a shape is that viscous effects can become important and, 
in some instances, totally determine the flow pattern. This is shown clearly in the 
experimental work of Jones, Bushnell, and Hunt [ll]. The exact conditions for 
which viscous effects dominate the flow presently are not fully understood. The 
experiments indicate, however, that the viscous influence on the shock pattern 
decreases as the free stream Reynolds number increases and consequently at high 
Reynolds number (> IO6 based on the maximum body diameter) inviscid flow 
calculations can be uncoupled from the viscous calculations to a first approxima- 
tion. The inviscid calculations presented in this paper therefore are of practical 
use only for the large Reynolds number conditions. 

The test calculations were conducted on two bell-shaped bodies, each of which 
generates strong compression waves near the surface and triple point shock 
conditions at the bow shock. The test were made for Mach 8 flow conditions with 
an ideal gas. The value of the adiabatic gas constant, y, was chosen to be 1.4. The 
procedure used to make the calculations and the results will now be discussed. 
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TJZCHNICAL DISCUSSION 

The equations used to describe the inviscid flow were employed in the form 

ft+G,+H,+y-Q=O (1) 

where the quantities f, G, H, and Q are the vector functions 

In these relations k = 0,l for plane or axisymmetric flow, respectively and E = 
internal energy + kinetic energy = e + xf2 + 29). 

The mesh system for the shock layer is shown in Fig. 1. The cell coordinates are 
formed by first introducing a set of rays which are approximately normal to the 
body surface. Each ray is characterized by the angle, 0, , which it forms with the 
axis of symmetry. Each ray is then divided into equally spaced segments between 

RAY LENGTH FROM 
X AXlS TO  CELL COORDINATE 

Y  
BOW SHOCK 

PIG. 1. Coordinate system for calculation. 
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the body and the bow shock. The distance along the ray, i, from the axis of sym- 
metry to the cell coordinate,j, is denoted by 1j.i . The difference equations for each 
cell are derived by integrating Eq (1) over the volume of the cell. The resulting 
expression can be written in the form 

where 

R= [~~~~~~~~~], A,f=f,+,-fv for v=i,j,t 

and the symbol (i,j) denotes the average over the interval i to i + 1 andj to j + I 
defined by fcrsij = JJf dx &/A. Similarly the symbol (j, t) denotes the average over 
the intervals j to j + 1 and At. For the boundary under consideration the quantity 
q,, denotes the velocity of flow normal to the boundary and V,, is the normal 
velocity at which the boundary is moving. A is the area of the mesh element and s 
is the arc length of the boundary under consideration. 

The finite difference equations describe the behavior of the space averaged flow 
variables, f<i,i, , in each cell. In order to solve the difference equations, however, it 
is necessary to relate the values of the boundary fluxes, HCj,,> and HCi,t> , to the 
averaged cell flow variables, f,,,,, . The basic concept for relating these quantities 
was proposed by Godunov. The procedure is to consider each boundary of a cell 
as a one dimensional initial value (Riemann) problem and utilize the averaged flow 
quantities of the cells on each side of the boundary for the initial states. The value 
of the flux HCi,t> or HCjstj is then determined in the following manner. 

First, the one dimensional problem is posed so that the cell boundary is the 
reference point for all waves resulting from the initial discontinuity. The typical 
wave pattern is shown in Fig. (2). Next the strengths and velocities of the waves 
are calculated from relationships derived by Godunov [IO]. From this information 
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FIG. 2. Evolution of Discontinuity in Fluid State. 
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it is then possible to determine the location of the cell boundary with respect to the 
positions of the waves. 

The general computation procedure was carefully checked on flows past smooth 
bodies before attempting the calculations reported in this paper. A portion of the 
results appear in reference [5]. 

DISCUSSION OF RESULTS 

Two bell-shaped bodies were selected to test the numerical method. The first 
was a blunt bell with a nose radius of 4/10 the base diameter. The body, along with 
the rays of the mesh, are shown in Fig. 3. This case was chosen for two reasons. First 
the flow would result in a triple point along the bow shock, but the angle between 
the two branches of the bow shock near the triple point would not approach 
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FIG. 3. Mesh rays and initial bow shock shape for body 1. 
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ninety degrees. Secondly, the interior shock stem from the triple point interacts 
with the sonic line of the flow. Each of these conditions introduce singularities in 
the flow which traditionally cause numerical computations to become unstable if 
one seeks accuracy or very smeared if one attempts to keep the calculation stable. 

The flow past body 1 was computed for a Mach 8.0 free stream with 12 cells 
between the bow shock and the body and 40 rays along the body. In order to 
reduce computation time the calculation was carried out in two steps. First a very 
crude bow shock shape was assumed and the flow was computed for 300 time steps. 
This is approximately the time required for the flow to travel one body length. The 
bow shock was then smoothed and the calculation restarted. This smoothed bow 
shock is shown in Fig. 3. The resulting shock and sonic line patterns after the flow 
become steady to three sign&ant figures (1200 time steps from the restart) are 
shown in Fig. 4. Note the position of the sonic line in the nose region of the body. 
As in most cases the flow becomes supersonic along the bow shock, but for this 
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FIG. 4. Bow shock and sonic line position for math 8.0 flow past body 1 after 1200 time steps. 
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problem the sonic line does not attach to the body. Instead it moves up and attaches 
to the shock stem from the triple point. Also shown is the position of the contact 
surface which originates at the triple point. 

The pressure distribution in the cells next to the surface of the body 1 a&r 
1200 time steps is shown in Fig. 5. The pressure drops initially as the fluid expands 
from the stagnation point and then begins to increase due to the curvature change 

FIG. 5. Surface pressure on body 1 for math 8 free stream after I#)0 t&C steps. 

of the body. This increase seems enhanced by a compression in the region where the 
triple point shock extends into the shock layer. Note that the pressure on the tIare 
of the body appears to overshoot the nose stagnation pressure. The authors under- 
took a study of this phenomena to determine if it was physically correct or the 
result of artificial viscosity effect in the numerical scheme. The study unforttmately 
did not yield unquestionable evidence, but it did, however, produce results which 
suggest that the effect is real and not artificial. In summary the study revealed the 
following (1) overshoots or undershoots could not be produced with the Godunov 
difference method using one-dimensional test cases with large flow gradients and 
(2) the cells adjacent to the flare portion of the body receive the majority of ffuid 
with a stagnation entropy lower than that of the normal shock stagnation condition. 
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The cells receive this fluid because streamlines emanating from non-normal 
portions of the bow shock collect very near the surface in the flare portion of the 
body. As a result the entropy of the fluid in the cell is less than stagnation entropy 
and consequently the maximum cell pressure can rise above the nose stagnation 
pressure. It is natural to expect a larger pressure overshoot for longer nosed bodies 
since streamlines of a lower entropy (from the region of small bow shock slope) will 
enter the surface cells on the flare. When the results of body 2 are discussed we will 
see that indeed this is the case. 

Body 2 was a long nosed bell shape with the nose radius 5/100 the base diameter. 
The body shape and the rays of the mesh are shown in Fig. 6. Also shown is the 
starting position of the smoothed bow shock used to start the final solution. This 
calculation served as a severe test of the computation procedure because of the 
sharp angle formed by the two branches of the bow shock at the triple point. As a 
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FIG. 6. Rays of mesh and initial bow shock shape for body 2. 
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result there was question as to whether the solution would reach a steady meaning- 
ful answer because of the difhculty in fitting the bow shock in this region. The 
calculation, however, approached a steady state at 1500 time steps after the shock 
shape of Fig. 6 was introduced. The resulting shock wave and sonic line patterns are 
shown in Fig. 7. The shock pattern looks acceptable except for the curvature of the 
upper branch of the bow shock near the triple point. Intuitively one would expect 
this shock to be approximately normal to the free stream instead of deflecting 
inward. Examination of Schlieren photographs from the work of Jones, Bushnell, 
and Hunt [ll] indicate that indeed the shock wave in the physical problem is 
approximately normal. The error in the calculated shock position is due to the finite 
mesh size which does not permit the exact placement of the triple point nor proper 
account of the high curvatures of the shock stems. The sonic lines for body 2 are 
typical of a blunt body flow, but the contact surface near the triple point has a slight 
dip due to the shock curvature of the upper bow shock branch. 
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FIG. 7. Steady shock shapes and sonic lines for body 2 in math 8.0 flow after 1500 time steps. 
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The surface pressure for the body is shown in Fig. 8 along with the experimental 
results of Jones, Bushnell, and Hunt [l I]. Again the pressure overshoot on the flare 
is observed but as anticipated earlier, it is larger in magnitude than for body 1 even 
though the free stream conditions and body geometry of the flare of the body are 
exactly the same. The magnitudes of the calculated results seems to agree with the 
experiments, but are shifted down the body by the amount of the error in the triple 
point position. The experimental pressures indicate that the lower branch of the 
triple point shock strikes the body slightly ahead of the calculated position. An 
interesting comparison of pressures is obtained if one shifts the peak of the calcu- 
lated pressure distribution to the approximate position it would have if the upper 
stem of the bow shock, near the triple point, were normal to the flow. Fig. 9 
displays the result. In this situation the calculated results agree surprisingly well 
with the experiments. One other point of interest is that the calculated pressure 
distribution near the triple point shock does not exhibit random oscillations even 
though it was smeared. The smearing, however was, small since the jump was 
confined to two cells. 

1.3 EXPERIMENTAL 
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Fro. 8. Surface pressure on body 2 for math 8.0 flow aftex 1500 time steps. 
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Fro. 9. Comparison of expimental and calculated surface prespurw forbody2withashift 
in (Y/D) Coordinates for calculated results. 

CGNCLNDING REMURKS 

The results of the calculations for the two bell-shaped bodies show the Godunov 
I!nite difference method to be stable during computation of bodies with strong 
compressions and large continuous changes in curvature. In addition the method 
computes triple point shock conditions reasonably well. The procedure seems 
limited only by the approximations introduced into the shock fitting analysis for 
the bow shock. Current analysis seems adequate as long as the angle between the 
two branches of the bow shock does not approach 90 degrees. 

Calculation times required for the flow to reach a steady state were typically 
15 to 20 minutes on a CDC 6600 computer for approximately 600 mesh points. In 
the physical problems this approximates the time required for the flow to travel 5 
body lengths. For smooth bodies this time drops to about two body lengths. 

In conclusion, the results of the calculations presented in this paper indicate that 
the Godunov method remains stable and yields reasonable results for most super- 
sonic blunt-body flow situations, provided the analyst provides an adequate analy- 
sis of the flow conditions at the boundaries. 
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